How songbirds became poisonous
Cloaked in orange and black, this bird from New Guinea is a perfect representative of Halloween β and itβs poisonous, too!
by GrrlScientist for ScienceBlogs | @GrrlScientist
Ihave been in love with New Guinea since I first read about it when I was a kid. Everything about this tropical island is exotic and fascinating to me, from the large numbers of endemic bird and plant species to the tremendous number of spoken languages β more than anywhere else on the planet. So I was immediately interested to learn about Jack Dumbacherβs adventures there between 1989 and 1991. At the time of his first visit, he was a grad student in ornithology who was catching birds of paradise as part of a National Geographic Society expedition β what I wouldnβt have given to be part of that! As the story goes, Dumbacher removed several feisty orange-and-black birds that had become accidentally entangled in his mist nets when he stopped to lick the wounds on his hands. Shockingly, his lips and mouth became numb: he had been poisoned.
βI was scared and I tried not to swallow,β he recalled. βI figured I had probably brushed up against some poisonous tree.β
Fortunately, his symptoms subsided after four hours. However, roughly two weeks later, a colleague also experienced these same symptoms after handling this same bird species. That was when Dumbacher began to suspect that the source for the poison was not the vegetation at all, rather, it was the bird β a hooded Pitohui, Pitohui dichrous β that was poisonous.
One year later, Dumbacher returned to New Guinea to verify his suspicion.
βI performed this very complicated and sophisticated experiment. I clipped off some feathers and popped them in my mouthβ β taking care not to swallow. His lips, mouth and tongue became numb almost immediately. Clearly it was the Pitohui itself β not some plant or tree β that was the culprit.
He spoke to the local tribespeople about this species and learned that they consider the bird to be taboo. Dumbacher recalled that some reported that the Pitohui was βgood for nothing, a rubbish bird.β
Dumbacher received permission to bring four hooded Pitohuis back to the United States for further study. He and John Daly, a chemist at the National Institutes of Health in Bethesda, Md., isolated and identified the poison, which turned out to be one of the Batrachotoxins (pictured, left). Batrachotoxins are extremely powerful poisons. They are cardio- and neurotoxic steroidal alkaloids found in South American poison dart frogs and Melyridae beetles β and remarkably, in the skin and feathers of five of the six Pitohui species of New Guinea. Astonishingly, another avian species, blue-capped Ifrita, Ifrita kowaldi, was later discovered to have batrachotoxins in its plumage, too.
Given this suite of poisonous birds, Dumbacher wondered whether all poisonous birds are closely related to each other. Based on morphological characters, it was thought they were closely related, but to learn more about the evolutionary history of this group of birds, it was necessary to reconstruct their relationships based on their DNA.
So Dumbacher and a team of molecular biologists sequenced the DNA from 55 museum specimens comprising three major polytypic Pachycephalidae genera (Colluricincla, Pitohui, Pachycephala) and most of the monotypic Pachycephalidae genera (Rhagologus, Aleadryas, Eulacestoma, Falcunclus, Oreoica). They analyzed these DNA sequences and recovered this phylogenetic tree (figure 1):
As you can see from this phylogeny, the six Pitohui species do not form a single (monophyletic) group. Instead, Dumbacher and his team found that P. nigrescens is allied with the whistlers (genus Pachycephala); P. ferrugineus and P. incertus are allied with the shrike-thrushes (genus Colluricincla). Pitohui cristatus is the closest relative β βsisterβ β to Aleadryas, and these two species are sister to the Crested Bellbird, Oreoica gutturalis, of Australia, while the two remaining Pitohui species (P. dichrous and P. kirhocephalus) form a distinct clade, or lineage. Based on these data, Dumbacher and his team are currently revising the genus Pitohui and reviewing the application of taxonomic names.
This phylogeny also shows that the two most toxic Pitohui species, the hooded Pitohui, P. dichrous, and the variable Pitohui, P. kirhocephalus β which also happen to be the most conspicuously colored β form a monophyletic group with strong statistical support.
Another finding is that the Morningbird of Palau, Pitohui tenebrosus, is actually a whistler, and according to the above phylogeny, this species may be closely related to the widely distributed Pachycephala pectoralis. Despite their close relationship, these sister species do not resemble each other physically, which provides more support for the new concept of βislands as enginesβ of evolution, as first proposed in 2005 by two of my postdoctoral colleagues at the AMNH, Rob Moyle and Chris Fillardi [read more about it here].
To answer his second question regarding the evolution of toxicity in these birds, Dumbacherβs team constructed a second phylogeny that maps all species that are known to have batrachotoxins in their skin and plumage (figure 2):
These data reveal that toxicity is not ancestral: instead, it has evolved several times (convergent evolution) in this particular group of birds, and it has evolved convergently in five of the six Pitohui species β the single exception is the White-bellied Pitohui, P. incertus, which lacks batrachotoxins in its skin and plumage.
The five toxic Pitohui species exhibit dramatic behaviors that likely are the result of their toxicity β almost as if they know theyβre poisonous. They are gregarious and vocal, and they are the leaders of large mixed flocks of birds as they forage in the forest understory. Their closest relatives, which are not toxic, do not share any of these behaviors.
The toxic Pitohui species are also deceptively similar in size, morphology and ecology β so much so that they were originally classified into one genus. However, the DNA data suggest that these birds evolved convergently to resemble each other on the basis of one shared character; toxicity. Such independent evolution of morphological and behavioral similarities among these birds may function as MΓΌllerian mimicry, where multiple toxic species resemble each other and thus, share the cost of βeducatingβ predators.
This research elegantly demonstrates how the evolution of just one character β in this case, toxicity β can profoundly affect the evolution of a suite of other characters, ranging from body size and behavioral traits to ecological niche.
Source:
J Dumbacher, K Deiner, L Thompson, R Fleischer (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds, Molecular Phylogenetics and Evolution, 49 (3), 774β781 DOI: 10.1016/j.ympev.2008.09.018.
Enjoy my writing? Please click on the green heart in the left corner to recommend this piece. Follow me on Medium for more like this.
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
GrrlScientist is very active on twitter @GrrlScientist and you can follow all her writing by subscribing to her TinyLetter
Originally published at scienceblogs.com on 5 December 2008.